Current Status of SBRT SABR & SRS

Alonso N. Gutiérrez, Ph.D. gutierrezan@uthscsa.edu

Division of Medical Physics Cancer Therapy & Research Center at University of Texas Health Science Center San Antonio San Antonio, TX 78229

Department of Radiation Oncology School of Medicine

SWAAPM Meeting – April 2014

Conflict of Interest Disclosure

- Ownership
 - VeriDos Solutions, LLC

Stereotactic Radiotherapy

- Guiding principal elements
 - Ablative doses: ≥ 8Gy
 - Focused dose distributions
 - Accurate geometrical radiation delivery
- Long standing success of SRS
 - >80-90% local control for benign, malignant tumors, AVM, trigeminal neuralgia*
 - Recent findings to pursue multiple brain metastases[#]
 - Treatment of multiple mets mono-isocentrically
- Newly, established success of SBRT
 - 1990's Karolinska Institute, Sweden*
 - Quick adoption for early-stage cancer and oligometastases

Increasing Use of SBRT

- More disease sites being pursued with SBRT techniques
 - Stage I NSCLC RTOG 0618, 0236, 0915, 0813
 - Lung Metastases
 - Spinal Tumors RTOG 0631
 - HCC/Liver Metastases
 - SCC H&N U Pitt.
- Open clinical trials:
 - 253 w/SBRT keyword* (4/2/2014)
- Push for establishing stereotactic programs in both academic and private centers

*www.clinicaltrials.gov

SBRT Survey

- Sample: 1600 rad oncs.
 - 551 responses
 - 37.5% (A) / 62.5% (P)
 - 63.9% SBRT users
- >50% adopt after 2008
- 76.0% users plan to increase use
- 66.5% of non-users planned to adopt SBRT
- Common sites

*Pan H, et al. Cancer. 2011. 117(19)

SBRT Survey

- Sample: 1600 rad oncs.
 - 551 responses
 - 37.5% (A) / 62.5% (P)
 - 63.9% SBRT users
- >50% adopt after 2008
- 76.0% users plan to increase use
- 66.5% of non-users planned to adopt SBRT
- Common sites

Department of Radiation Oncology School of Medicine

*Pan H, et al. Cancer. 2011. 117(19)

Radiobiology Challenges

- Normal tissue toxicity
 - Tolerance Tables
 - RTOG Study Updates f/u time relatively short
 - AAPM TG 101: Dose/Volume constraints
- Radiobiological modeling
 - High dose models
 - Linear Quadratic-Linear (LQ-L)
 - Universal Survival Curve (USC)
 - Lack in vivo tumor dependencies
- Environmental/Molecular responses
 - Microvasculature endothelial apoptosis w/ 15-20Gy single fraction doses*
 - Induction in T-cell priming → reduction of primary tumor in certain cell lines with 15-25Gy single fraction doses[#]

Technical Challenges

- Radiation delivery equipment
 - Machine accuracy mechanical and imaging
 - Reduced localization residual errors 6 DOF couch correct.
 - Real-time patient monitoring
 - Easier implementation motion management
 - Respiratory inhibition
 → Gating/ABC & Tracking solutions
- Immobilization equipment
 - Improve patient setup reproducibility
 - Improve patient comfort
- Quality assurance equipment
 - Smaller and improved dosimeters
 - Improve phantom design SRS/SBRT-specific

Safety Challenges

- Specialized training of staff
 - Role definition of staff in stereotactic programs
 - Formalize training requirements
- Quality assurance programs of equipment
 - Stereotactic Acceptance and Commissioning
 - Stereotactic Quality Assurance
- Establishment of safety programs
 - Patient/Process QA
 - Documentation
 - Ongoing Quality Improvements
 - Prevention of catastrophic failures

Detrimental Consequences - SBRT

- PTV (Min Dose)
 - 1mm: -4.3%
 - 3mm: -12.2%
 - 5mm:-20.2%

• GTV

CANCER THERAPY & RESEARCH CENTER

Science Center

SAN ANTONIO

- 1mm: -2.7%
- 3mm: -10.3%
- 5mm: -20.1%

Detrimental Consequences - SRS

Ideal Rad Del. Equipment

- Accuracy/Stability
 - Tight machine specs (≤ 1.0mm)
- Precision via fine apertures
 - microMLC / IRIS collimator & MLC
- Image guidance
 - Accurate localization (≤ 1.0mm)
 - Volumetric image information
 - Real-time imaging
- Delivery efficiency
 - Higher dose rate
 - VMAT delivery
- Throughput
 - Fast, integrated workflow

Universal Functionality

Specialized Functionality

Future Potential

- Real-time 4D volumetric imaging
- Non-ionizing, soft tissue contrast
- Design
 - Three ⁶⁰Co sources with DF-MLC
 - Split-magnet MRI (0.35T) system
- Automatic gating based on soft tissue detection
- Real-time adaptive tools

MR-Guided/Real-time 3D-based (MRgRT)

Despite the nice equipment....

Don't forget the fundamentals!

SBRT Immobilization Devices

SAN ANTONIO

Department of Radiation Oncology **School of Medicine**

Hamilton, et al. Neurosurgery. 1995.

Abdominal Compression

- Basis: Limit diaphragm motion by inflating lungs with chest wall musculature
- Goal: Restrict cranial-caudal
 motion and reduce ITV volume
- SBRT Lung study*
 - Lower lobe
 - 3.5mm (amp) / 3.6cc (ITV)
 - Upper lobe
 - 0.8mm (amp) / 0.2cc (ITV)

Department of Radiation Oncology School of Medicine

Bouilhol G, et al. Phys Med. 2013

SRS Immobilization Devices

- Frameless IG-SRS
- Ease of workflow
- Setup accuracy studies
 - BrainLAB: 0.76 ± 0.46mm*

- SIG-SRS
- Initial study show comparable clinical outcomes for brain mets[#]
- Improved patient comfort

Department of Radiation Oncology School of Medicine

*Gevaert T, et al. IJROBP. 85(5). 2012 *Pan H, et al. Neurosurgery. 71(4). 2012

Quality Assurance Equipment

- Small/Narrow field geometry
 - New dosimeters for improved dosimetric characterization
- AAPM Rpt 54 detector dimension < half field size (era ~ 1.0cm²)
- AAPM TG 101 spatial resolution ≤ 1.0mm (era ~ 5mm)

SCIENC

SAN ANTONIO

Small Field Measurement Errors

LESSONS FROM RECENT ACCIDENTS IN RADIATION THERAPY IN FRANCE

S. Derreumaux*, C. Etard, C. Huet, F. Trompier, I. Clairand, J.-F. Bottollier-Depois, B. Aubert and P. Gourmelon Institut de Padioprotection et de Súreté Nucléaire, Direction de la Padioprotection de l'Homme, IRS

Institut de Radioprotection et de Sûreté Nucléaire, Direction de la Radioprotection de l'Homme, IRSN, BP 17, F-92262 Fontenay-aux-Roses Cedex, France

Radiation Protection Dosimetry (2008), Vol. 131, No. 1, pp. 130-135

The New Hork Eimes Reprints

This copy is for your personal, noncommercial use only. You can order presentation-ready copies for distribution to your colleagues, clients or customers here or use the "Reprints" tool that appears next to any article. Visit www.nytreprints.com for samples and additional information. Order a reprint of this article now.

Radiation Errors Reported in Missouri

By WALT BOG DANICH and REBECCA R. RUIZ

A hospital in Missouri said Wednesday that it had overradiated 76 patients, the vast majority with brain cancer, during a five-year period because powerful new radiation equipment had been set up incorrectly even with a representative of the manufacturer watching as it was done.

Department of Radiation Oncology School of Medicine

*Slide courtesy of TD Solberg

Small Field Measurement - "Daisy chain"

Department of Radiation Oncology School of Medicine *Dieterich S SCIENCE CENTER SAN ANTONIO

*Dieterich S, et al. Med Phys. 2011. 38. Slide courtesy of Min Leu

SBRT/SRT – Patient Specific QA

- OCTAVIUS 1000 SRS
 - High spatial resolution for small field IMRT plans
- microLion-based array
- 10x10cm² active area
- 977 liquid chambers
- (2.3mm x 2.3mm x 0.5mm)

Overall Geometrical Accuracy

SCIENCE CENTER

SAN ANTONIO

Newer QA Phantoms

- Specialized SBRT/ SRS phantoms
 - End-to-end testing crucial
 - Spatial accuracy (Hidden target)
 - Dosimetric accuracy
 - E2E needs to incorporate imaging
 - Tolerance: ≤ 1.0mm*

Department of Radiation Oncology School of Medicine

*Solberg TD, et al. PRO. August. 2011.

Ind. Verification – IROC Phantoms

- Ind. E2E test
 - Var. phantoms
 - Lung
 - H&N
 - Liver
 - Pelvis
- Required for newly established programs*
- Clinical trials

*Solberg TD, et al. PRO. August. 2011.

IROC" IMAGING AND RADIATION ONCOLOGY CORE Guild Leders in Clinical Total Quality Assessment IROC Houston QA Center MD Anderson Cancer Center 8060 El Rio Severi Houston, TX 77054 Tel (713) 745-8989 Fax (713) 794-1364

Report of Liver Phantom Irradiation

Date of Report Institution: Physicist Radiation Machine: Collimator: IMRT Technique: Treatment Planning System: Date of Irradiation: March 25, 2014 UT Health Science Ctr at CTRC-Grossman Alonso Gutierrez, Ph.D. Novalis, Novalis (4302) – 6 MV MLC Segmental (step and shoot) MLC Philips, Pinnacle (3D/IMRT) – Adaptive Convolve February 3, 2014

Description of procedure:

An anthropomorphic liver phantom incorporating a liver structure with two targets and two normal tissue structures (NTS) was placed in the supine position in a CT scanner and imaged. TLD capsules located near the center of each target provided point does information and two sheets of GAFChromic™ Dosimetry Media provided dose distributions in the coronal and sagittal planes of each target. The phantom NTSs contain TLD dosimeters. Each target within the liver phantom was irradiated to approximately 6 Gy using an IMRT technique. The analyses of the results were based on dose calculation applying correction for tissue heterogeneity.

The dosimetric precision of the TLD is 3%, and the spatial precision of the film and densitometer system is 1 mm.

Location	IROC-H vs. Inst.	Criteria	Acceptable
PTV1_TLD	0.99	0.93 - 1.07	Yes
PTV2_TLD	0.98	0.93 - 1.07	Yes
Film Plane	Gamma Index*	Criteria	Acceptable
PTV 1 Coronal	100%	≥ 85%	Yes
PTV 1 Sagittal	100%	≥ 85%	Yes
PTV 2 Coronal	100%	≥ 85%	Yes
PTV 2 Sanittal	96%	≥ 85%	Yes

The phantom irradiation results listed in the table above do meet the criteria established by the RPC in collaboration with the cooperative study groups. Therefore, your institution has satisfied the phantom irradiation component of the credentialing process to enter patients onto clinical trials.

TLD and Film Analysis by: Paola Alvarez, M.S. and Carrie Amador (A

Report Checked by:

David S. Followill

UT HEALTH

Department of Radiation Oncology School of Medicine

SCIENCE CENTER

Let's not forget about safety....

Department of Radiation Oncology School of Medicine & RESEARCH CENTER UT HEALTH SCIENCE CENTER SAN ANTONIO

SBRT guidelines

Int. J. Radiation Oncology Biol. Phys., Vol. 76, No. 2, pp. 326–332, 2010 © 2010 American Society for Therapeutic Radiology and Oncology and American College of Radiology Printed in the USA. All rights reserved 0360-3016/10/\$-see front matter

doi:10.1016/j.ijrobp.2009.09.042

REPORT

AMERICAN SOCIETY FOR THERAPEUTIC RADIOLOGY AND ONCOLOGY (ASTRO) AND AMERICAN COLLEGE OF RADIOLOGY (ACR) PRACTICE GUIDELINE FOR THE PERFORMANCE OF STEREOTACTIC BODY RADIATION THERAPY

Louis Potters, M.D.,^{*} Brian Kavanagh, M.D.,[†] James M. Galvin, D.Sc.,[‡] James M. Hevezi, Ph.D.,[§] Nora A. Janjan, M.D.,[¶] David A. Larson, M.D., Ph.D.,^{**} Minesh P. Mehta, M.D.,^{††} Samuel Ryu, M.D.,^{‡‡} Michael Steinberg, M.D.,^{§§} Robert Timmerman, M.D.,^{¶¶} James S. Welsh, M.D.,^{***} and Seth A. Rosenthal, M.D.,^{†††}

*Department of Radiation Medicine, Long Island Jewish Medical Center, New Hyde Park, New York; [†]Department of Radiation Oncology, University of Colorado, Denver, Aurora, Colorado; [‡]Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania; [§]Methodist Cancer Center, San Antonio, Texas; [¶]Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas; ^{**}Department of Radiation Oncology, University of California, San Francisco, San Francisco, California; ^{††}Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin; ^{‡‡}Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigar; ^{§*}Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; ^{***}Department of Radiation Oncology, Riverview Hospital, Wisconsin Rapids, Wisconsin; and ^{†††}Radiation Oncology Center, Radiological Associates of Sacramento, Sacramento, California

Required read

- Technical recommendations
- Normal tissue tolerance • tables
- Touched on program • development and personnel roles

Stereotactic body radiation therapy: The report of AAPM Task Group 101 University of Virginia Health System, Charlottesville, Virginia 22908 Kamil M. Yenice, Co-Chairman University of Chicago, Chicago, Illinois 60637 David Followill University of Texas MD Anderson Cancer Center, Houston, Texas 77030 James M. Galvin oennos m. steavin Thomas Jefferson University Hospital, Philadelphia, Pennsylvania 19107 Windern Finson Wake Forest University, Winston Salem, North Carolina 27157 Brian Kavanagh University of Colorado School of Medicine, Aurora, Colorado 80045 Stanford University, Palo Alto, California 94305 Michael Lovelock Memorial Stoan-Kettering Cancer Center, New York, New York 10021 M.D. Anderson Cancer Center Orlando, Orlando, Florida 32806 University of Texas Southwestern Medical Center, Dallas, Texas 75390 Thomas Purdie University of Toronto, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada University of Texas MD Anderson Cancer Center, Houston, Texas 77030 University of Rochester Medical Center, Rochester, New York 14642 University of Utah, Salt Lake City, Utah 84112 David J. Schlesinger University of Virginia Health System, Charlottesville, Virginia 22908 Almon S. Shiu Particles of General University of Texas MD Anderson Cancer Center, Houston, Texas 77030 University of Texas Southwestern Medical Center, Dallas, Texas 75390 Johns Hopkins University, Baltimore, Maryland 21231 Volker Stieber Forsyth Regional Cancer Center, Winston Salem, North Carolina 27103 Robert Timmerman University of Texas Southwestern Medical Center, Dallas, Texas 75390 University of Wisconsin, Madison, Wisconsin 53792 Dirk Verellen UV Brussel, Vrije Universiteit Brussel (VUB), Brussels B-1090, Belgium Lu Wang Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 Fang-Fang Yin Party-roung Int Duke University Medical Center, Durham, North Carolina 27710 (Received 1 December 2009; revised 3 May 2010; accepted for publication 4 May 2010; 4078 Med. Phys. 37 (8), August 2010 0094-2405/2010/37(8)/4078/24/\$30.00 UT Health © 2010 Am. Assoc. Phys. Med. 4078

SCIENCE CENTER

SAN ANTONIO

Practical Program Guidelines

Practical Radiation Oncology (2011)

Quality and Safety Considerations in Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy

Timothy D. Solberg, Ph.D.¹, James M. Balter, Ph.D.², Stanley H. Benedict, Ph.D.³, Benedick A. Fraass, Ph.D.2, Brian Kavanagh, M.D.⁴, Curtis Miyamoto, M.D.⁵, Todd Pawlicki, Ph.D.⁶, Louis Potters, M.D.⁷, Yoshiya Yamada, M.D.⁸

¹Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; ²Department of Radiation Oncology, University of Michigan Health System, Ann Arbor, Michigan; ³Department of Radiation Oncology, University of Virginia Health System, Charlottesville, Virginia; ⁴Department of Radiation Oncology, University of Colorado, Denver, Aurora, Colorado; ⁵Department of Radiation Oncology, Temple University, Philadelphia, Pennsylvania; ⁶Department of Radiation Oncology, University of California, San Diego, California; ⁷Department of Radiation Medicine, Long Island Jewish Medical Center, New Hyde Park, New York; ⁸Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York

Program Goals

Table 1. Essential planning aspects for developing a new SBRT program and/or considering new disease sites.

Recommendation	Duration or Frequency	Reference
Establish clinical program goals, specify disease sites, identify program specialists, develop guidelines for treatment, follow-up and assessment.	Initially	33-34, 36
Identify required resources: expertise, personnel, technology, time.	Initially, and for each new technology and/or disease site	32-33
Perform technology assessment commensurate with clinical goals, identify equipment and processes for simulation, immobilization, image guidance, management of organ motion, treatment delivery.	Initially, and for each new technology and/or disease site	32-33
Perform assessment of staffing levels, develop processes for initial and ongoing training of all program staff.	Initially, and for each new technology and/or disease site	32-35

- Establish program goals with clinical and admin team disease sites
- Identify resources needed for successful program
- Ensure equipment will satisfy program goals

Personnel Qualifications

Table 2. Personnel qualifications of a stereotactic program

Recommendation	Duration or Frequency	Reference
All personnel must demonstrate initial attainment of knowledge and competence in their respective discipline through graduation from an approved educational program, board certification and licensure as appropriate.	Initially	32-33
All personnel must receive vendor provided equipment -specific training prior to involvement in an SBRT program.	16 hours per staff member	32, 34
All personnel must receive disease-site-specific training prior to involvement in a stereotactic program.	16 hours per staff member	32, 34
All personnel must maintain their skills by lifelong learning through continuing professional development. For physicians and physicists this is the ABR Maintenance of Certification process.	Ongoing	32, 34-35
There must be adequate resources in place to meet the demands of the stereotactic program with sufficient staff. Staff must have sufficient time to carry out the necessary tasks without undue pressure.	Ongoing	32-33, 37, 39
Job description and list of responsibilities should be clearly delineated in writing for all stereotactic program individuals.	Initially	32-33
Non-radiation oncology specialists can sometimes lend expertise in the area of target delineation for SBRT, given a deep fund of knowledge in the anatomy of various body sites. Examples of such specialists include neurosurgeons, pulmonologists, hepatologists, and oncologic surgeons.		

Patient-specific QA

Table 7. Patient-specific quality assurance activities.

Recommendation	
The course of treatment, including dose schedule, normal tissue constraints, CTV/ITV and PTV margins, should follow established national guidelines, with careful consideration of the setup accuracy of the particular system in place at the given institution. Examples of dose constraints used at one institution are provided Reference 61.	33-34, 63
Treatment protocols that spell out responsibilities and detailed procedures ,must be available for all personnel, including therapists, medical physicists and radiation oncologists.	
One or more comprehensive checklists should be used to guide all aspects of the treatment process. Examples of checklists used at several institutions are provided in Appendix 2 and 3. Note: these checklists intended to serve as a template, and should not be adopted in whole or in part. They are institution and technology specific are meant solely for illustration.	
Appropriate program team members, including radiation oncologist(s), medical physicist(s) and radiation therapist(s) must be present as described by their responsibilities during the various aspects of the treatment process.	

Patient Specific QA – Process Checklists

CANCER THERAPY & RESEARCH CENTER UT HEALTH SCIENCE CENTER SAN ANTONIO	CANCER THERAPY & RESEARCH CENTER UT HEALTH SCIENCE CENTER		
Treatment Planning Checklist: Frameless Radiosurgery	SAN ANTONIO		
Please ensure the following is completed:	Therapist Checklist: Frameless Radiosurgery		
Patient Name: CTRC#	Please complete and initial the following:		
Dimost & verify images	Winston Lutz test completed and passed - Verified by physicist		
	Printed treatment plan received		
	TaPos placed on Localizer Box correctly		
Hi-resolution (<1.5mm slice thickness) Correct pulse sequence (i.e. T1-weighted post contrast)	Verified by physicist		
	Beams verified for any couch collisions and MLC verified for differences with <u>TaPos</u> patterns		
CT Images Localized (Use H&N Localizer for Frameless-based SRS)	Completed Therapist column on " <u>RadQnc</u> Chart Check"		
Fusion approved by radiation oncologist AND physicist	Prescription AND Electronic documents (Plan/2 nd Check) approved by radiation oncologist an physicist		
Target segmentation approved by radiation oncologist AND neurosurgeon	If applicable, IMRT QA approved by physicist		
C Analy access that Density table	Patient data loaded up on Exac Trac system		
	Patient ID confirmed as required by Policy RTT 16.0 (Patient Time Out)		
Check the box to verify that the localizer box was used.	Patient Name: CTRC# CTRC# Patient aligned to correct stereotactic coordinate using Evac Trac system		
Check the box to insert treatment table model to CT dataset	Each coordinate to be double checked by both physicist AND physician/therapist		
Surface rendering accurate	If cone-based, fill out Cone Interlock Verification Checklist Acquire Exacting images fuse apply shifts and acquire verification images		
Treatment prescription verified for ALL lesions	Acquire Exactria: images, rose, apply sints, and acquire vermation images Physicists AND physician approve fusion		
	Disable Varian couch movement motors (Vert, Lat, Long)		
Verify gantry and couch not in collision position	Record the position for each site below		
Compute PITV ratio for each lesion—to be included in medical physics consultation	Coordinates Isg. #1 Isg. #2 Isg. #3 Isg. #4		
	Vert.		
Ensure "Check Mark" is present in top right corner of iPlan software	Long.		
Approve plan	Lat.		
Complete all steps outlined in SR.1.1 - SRS Planning Documentation Policy	Verify beam parameters with physicist prior to delivering radiation Responsible Therapist*: Date:		
Export treatment plan to ExacTrac and notify therapist	Responsible Rad Qnc Physicist: Date:		
	By my signature above, I am certifying that the SRS set-up meets the specification in the treatment plan		
Reconneible Physicisty Date:			
By my signature above, I am certifying that the SRS set-up meets the specification for SRS treatment plans	Repeat last 5 steps for each isocenter (if applicable)		
	ER THER. *Piease turn completed form to radiation oncology physicist		
& RES	EARCH CENTER		
••UT	HEALTH		
epartment of Radiation Oncology			
SCIENCE SCIENCE			

School of Medicine

SAN ANTONIO

- Increasing demand for SBRT/SRS to be implemented due to clinical success
- Novel radiation delivery system and equipment is facilitating the implementation of SBRT/SRS programs
- New programs must be aware of guidelines and place strict emphasis on quality assurance of entire process
- All personnel must be trained and aware of their role and commitment to the process

Thank you for your time and attention!

Respiratory Inhibition

Department of Radiation Oncology School of Medicine • UT HEALTH SCIENCE CENTER SAN ANTONIO